Synthesis, Properties, and Reactions of Hexasilyl-3,3'-bicyclopropenyls and Related Compounds¹⁾

Kenkichi SAKAMOTO, Takuya SAEKI, and Hideki SAKURAI Department of Chemistry, Faculty of Science, Tohoku University, Aoba-ku, Sendai 980

Silylation of tetrachlorocyclopropene with trialkylchlorosilanes and magnesium in the presence of HMPA gave hexasilyl-3,3'-bicyclopropenyls or conjugated polymers containing both silylcyclopropene and silylallene moieties. Some reactions of these compounds were described.

Recently, we have reported preparation and some reactions of hexakis(trimethylsilyl)benzene (1) as a member of the fully silylated π -electron systems.²⁾ Since silyl groups perturb π -electron systems strongly by both electronic and steric effects, 1 exhibits quite unique properties. For example, the benzene ring of 1 was highly distorted into a chair form and 1 undergoes facile photochemical isomerization to the corresponding Dewar-benzene.^{2a)} Moreover, pyrolysis of 1 resulted in the formation of products arising from the rupture of the benzene ring.^{2c)} We report herein synthesis and reactions of hexakis(trimethylsilyl)-3,3'-bicyclopropenyl (2) which should be the most strained valence isomer of 1^{3-5} and hence the reaction of 2 should be very much interesting.

The reaction of tetrachlorocyclopropene with trimethylchlorosilane and magnesium in a mixed solvent of THF and HMPA (THF/HMPA = 3/1) at 0 °C gave 2 in 51% yield in addition to a small amount of tetrasilylallene (eq. 1).⁶⁾ The structure of 2 was determined by spectroscopic data.⁷⁾ In the ¹³C NMR spectrum of 2, characteristic signals of quaternary and vinyl carbons appeared at 28.36 and 142.15 ppm, respectively. The mass spectrum of 2 showed the molecular ion peak (M⁺) at m/z 510 and a substantially strong peak at m/z 255 assignable to the tris(trimethylsilyl)cyclopropenium 2π -aromatic cation.

CI CI
$$R_3SiCI$$
, Mg R_3Si SiR_3 $2 (R_3 = Me_3; 51\%), 3 (R_3 = EtMe_2; 36\%), 4 (R_3 = BuMe_2; 11\%). (1)$

Hexakis(ethyldimethylsilyl)— and hexakis(butyldimethylsilyl)bicyclopropenyls (3 and 4) were also obtained in 36 and 11% yields, respectively, by the similar reactions of tetrachlorocyclopropene with the corresponding $R_3SiCl/Mg/HMPA$ reagents. On the other hand, the similar silylation reaction with t-butyldimethylchlorosilane resulted in the formation of tetrakis(t-butyldimethylsilyl)cyclopropene (5) in 1.8% yield, together with a polymer 6 as a major product of the reaction (eq. 2).

By precipitation, the polymer was obtained as black powder soluble in various organic solvents such as hexane. The molecular weight of $\bf 6$ amounted to over 10^6 as determined by GPC analysis. The structure of $\bf 6$ was elucidated by the following spectroscopic data. A considerable amount of chlorine was detected by elemental analysis for $\bf 6$. In the 1H NMR spectrum of $\bf 6$, only the t-butyldimethylsilyl moiety was observed. The IR spectrum of $\bf 6$ indicated the presence of both cyclopropene and allene moieties. Since three-membered ring compounds can conjugate with double-bonded species, $\bf 6$ should be a highly conjugated polymer. Actually, the polymer shows broad electronic absorption whose end is longer than 700 nm.

The bicyclopropenyl **2** exhibits an electronic absorption maximum at 263 nm and a discernible shoulder at around 310 nm. The absorption maximum of **5** is located at 305 nm. These low-energy absorptions are explained in terms of a $\sigma(C-Si)-\pi$ interaction which results in the destabilization of the HOMO levels of silyl-substituted cyclopropenes as shown in Fig. 2.

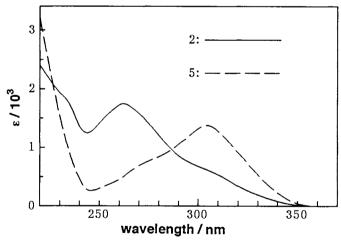


Fig.1. UV spectra of 2 and 5 in hexane.

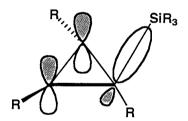


Fig. 2. σ - π interaction in silylcyclopropene.

Isomerization of bicyclopropenyls has been widely investigated. Although the most bicyclopropenyls are isomerized to benzene derivatives, pyrolysis of $\mathbf{2}$ in benzene at 250 °C did not give $\mathbf{1}$, but biallene $\mathbf{7}$ in a quantitative yield. Since silyl-substituted cyclopropenes were known to isomerize to allene derivatives, $\mathbf{10}$, the isomerization of $\mathbf{2}$ should proceed in a stepwise manner through the corresponding cyclopropenylallene. Actually, flash vacuum pyrolysis (400 °C, $\mathbf{10}^{-4}$ torr) of $\mathbf{2}$ gave hexasilylcyclopropenylallene $\mathbf{8}^{12}$) that was isomerized to $\mathbf{7}$ by further pyrolysis.

Photolysis of 2 in the presence of benzophenone as a triplet sensitizer with a medium-pressure

mercury-arc lamp with a Pyrex filter also produced the biallene 7 in 84% yield. Hexasilylbenzene 1 also was converted to biallene 7 under thermochemical conditions. Therefore, 7 should be the most stable compound among the $C_6(SiMe_3)_6$ isomers. The results are summarized in Scheme 1.

Scheme 1.

Oxidation of 2 with dichlorodicyanoquinone (DDQ) gave a desilylated product, tetrakis(trimethyl-silyl)-3-hexene-1,5-diyne (9) in a quantitative yield; ¹³⁾ the fate of the silyl groups was found in the doubly silylated product of DDQ (10) as shown in Scheme 2. In a separate experiment, a catalytic amount of aluminum chloride promoted a quantitative conversion of 2 to biallene 7. The reaction of 7 with DDQ also gave 9 quantitatively. Therefore, it is possible that the cation radical of 7 is produced as an intermediate in the oxidative transformation of 2 to 9, since aluminum chloride is well known as a one electron oxidant. ¹⁴⁾

This work was supported by the Ministry of Education, Science and Culture of Japan (Specially Promoted Research No. 02102004).

References

- 1) Chemistry of Organosilicon Compound 310.
- 2) a) H. Sakurai, K. Ebata, C. Kabuto, and A. Sekiguchi, *J. Am. Chem. Soc.*, **112**, 1799 (1990); b) A. Sekiguchi, K. Ebata, C. Kabuto, and H. Sakurai, *ibid.*, **113**, 1464 (1991); c) A. Sekiguchi, K. Ebata,

- Y. Terui, and H. Sakurai, Chem. Lett., 1991, 1417.
- 3) A. Greenberg and J. F. Liebman, J. Am. Chem. Soc., 103, 44 (1981).
- 4) Quite recently, we have found that photolysis of 1 using a low-pressure mercury-lamp gave 2 as a minor product among many isomers of 1. The details of the reaction will be described elsewhere soon.
- 5) For unsubstituted 3,3'-bicyclopropenyl, see: W. E. Billups and M. M. Haley, *Angew. Chem., Int. Ed. Engl.*, 28, 1711 (1989); R. Boese, D. Blaser, R. Gleiter, K.-H. Pfeifer, W. E. Billups, and M. M. Haley, *J. Am. Chem. Soc.*, 115, 743 (1993).
- 6) R. Calas, J. Organomet. Chem., 200, 11 (1980).
- 7) **2**: Colorless crystals, mp 228–229 °C; 1 H NMR (CDCl $_{3}$, δ) –0.07 (s, 18 H), 0.18 (s, 36 H); 13 C NMR (CDCl $_{3}$, δ) 1.09, 1.15, 28.36, 142.15; 29 Si NMR (CDCl $_{3}$, δ) –10.34, –0.66; MS (70 eV) m/z (%) 510 (M $^{+}$, 8.2), 255 (85), 73 (100); HRMS Found: m/z 510.2839. Calcd for $C_{24}H_{54}Si_{6}$: M, 510.2841; UV (hexane) λ_{max} /nm (loge) 263 (3.4), 310 (sh. 2.8); IR (KBr) v/cm $^{-1}$ 1246, 1678, 2902, 2956.
- 8) 5: Colorless crystals, mp 84.5 °C; ${}^{1}\text{H}$ NMR (CDCl₃, δ) -0.06 (s, 12 H), 0.24 (s, 12 H), 0.96 (s, 18 H), 0.99 (s, 18 H); ${}^{13}\text{C}$ NMR (CDCl₃, δ) -2.60, -0.81, 18.56, 19.33, 27.88, 28.17, 29.19, 139.01; ${}^{29}\text{Si}$ NMR (CDCl₃, δ) -1.46, 10.58; MS (70 eV) m/z (%) 496 (M⁺, 0.1), 381 (100); HRMS Found: m/z 496.3762. Calcd for $C_{27}H_{60}Si_4$: M, 496.3772; UV (hexane) $\lambda_{\text{max}}/\text{nm}$ (log ϵ) 305 (3.3); IR (KBr) ν/cm^{-1} 1687. **6**: Black powder, ${}^{1}\text{H}$ NMR ($C_{6}D_{6}$, δ) -0.1 0.7 (bs, 6 H), 0.7 1.5 (bs, 9H); IR (CCl₄) ν/cm^{-1} 1713, 1861; Anal. Found: C, 61.87; H, 7.90; Cl, 6.15%. On the basis of an empirical formula determined by the elemental analysis, the yield of the polymer was estimated to be 13%.
- 9) R. Breslow, P. Gal, H. W. Chang, and L. J. Altman, J. Am. Chem. Soc., 87, 5139 (1965).
- 10) F. Gruger and G. Szeimies, *Tetrahedron Lett.*, **27**, 1563 (1986); A. Padwa, K. E. Krumpe, L. W. Terry, and M. W. Wannamaker, *J. Org. Chem.*, **54**, 1635 (1989).
- 11) Both pyrolysis and photolysis of **5** resulted in the quantitative formation of tetrakis(*t*-butyldimethyl-silyl)allene.
- 12) **8**: Colorless crystals, mp 144–147 °C; 1 H NMR (CDCl₃, δ) –0.07 (s, 9 H), 0.05 (s, 9 H), 0.11 (s, 18 H), 0.21 (s, 18 H); 13 C NMR (CDCl₃, δ) 0.37, 0.64, 1.00, 1.67, 18.91, 79.85, 85.67, 144.67, 209.28; 29 Si NMR (CDCl₃, δ) –10.13, –4.45, –4.43, 2.14; MS (70 eV) m/z (%) 510 (M⁺, 11), 364 (19), 261 (20), 155 (21), 73 (100); HRMS Found: m/z 510.2839. Calcd for $C_{24}H_{54}Si_{6}$ 510.2841.
- 13) **9**: 1 H NMR (C ₆D₆, $^{\delta}$) 0.18 (s, 18 H), 0.26 (s, 18 H); 13 C NMR (CDCl₃, $^{\delta}$) -1.1, -0.3, 108.2, 110.7, 149.8; 29 Si NMR (CDCl₃, $^{\delta}$) -18.7, -4.8; HRMS Found: m/z 364.1893. Calcd for C ₁₈H₃₆Si₄: M, 364.1894.
- 14) H. Bock and U. Lechner-Knoblauch, J. Organomet. Chem., 294, 295 (1985).

(Received June 29, 1993)